Citation of research publications of Dr. Rakesh Kr Singh et. Al by March 2013

Google Search - RK Singh, Patna Women’s College, C. Upadhyay-BHU, A. Yadav, S Layek...

... info Rakesh Kumar Singh a, b, A. Yadav c, S. Layek-IIT Kanpur d, ... Patna University, Patna, Bihar, India b Department of Physics, Patna University, Patna, Bihar, India... Cation distribution of Ni0.5Zn0.5Fe2O4 nanoparticles ... “A set of Ni0.5Zn0.5Fe2O4 samples were prepared by citrate precursor route to investigate the growth...

Cited by 2 Related articles All 5 versions

Research paper detail: Cation distribution of Ni0.5Zn0.5Fe2O4 nanoparticles

Rakesh K. Singh1*, Chandan Upadhyay2, Samar Layek3, A. Yadav4
1* Department of Physics, Patna Women’s College, Patna University, Patna, INDIA, 800001
2 School of Materials Science and Technology, Institute of Technology, Banaras Hindu University, Varanasi, INDIA 221005
3. Department of Physics, Indian Institute of Technology, Kanpur, INDIA 208106
4. Vidya Vihar Institute of Technology, Purnea, INDIA 854301

*Corresponding Author: e-mail: rakeshpu@yahoo.co.in

Cited By

Cited No-1: Evans Library Catalog - Search Results -

https://catalog.lib.fit.edu/Summon/Search?type=Author&lookfor, Cation distribution of Ni0.5Zn0.5Fe2O4 nanoparticles ... “A set of Ni0.5Zn0.5Fe2O4 samples were prepared by citrate precursor route to investigate the growth...

Cited No-2:

International Journal of Science and Technology Volume 1 No. 5, May, 2012 IJST © 2012 – IJST Publications UK. All rights reserved. 275

Verwey’s Hopping Transition Mechanism in relation to Dielectric studies of Zn & Sb substituted Cu ferrites

R. Dhanaraju a, M.K. Rajua, V. Brahmajirao b, S. Bangarraju c

a Material Science Research Laboratories & Central Instrumentation Facility, Department of Physics, Andhra University, Visakhapatnam-530005, INDIA
b Dept. Of Nano science and Technology, School of Biotechnology, MGNIRSA, c. Swaminathan Research Foundation,[DSRF], Gaganmahal, HYDERABAD-500029, Andhra Pradesh, INDIA
Citation of research publications of Dr. Rakesh Kr Singh et. al

Google Search - Thermal, structural, magnetic and photoluminescence studies on cobalt ferrite nanoparticles obtained by citrate precursor method

RK Singh, A Narayan, K Prasad, RS Yadav… - Journal of thermal ..., 2012 - Springer
... A. Narayan PG Department of Physics, Patna University, Patna 800 005, India ... 578 RK Singh, Patna Women's College etal. 123 ... A size-dependent photoluminescence spectrum of nanoferrite was observed in visible region of different colors only through 250 and 330 nm excitation radia- tion source. ...

Cited by 2 Related articles All 6 versions Cite

Research paper detail:

Thermal, structural, magnetic and photoluminescence studies on cobalt ferrite nanoparticles obtained by citrate precursor method
R. K. Singh • A. Narayan • K. Prasad • R. S. Yadav • A. C. Pandey • A. K. Singh • L. Verma • R. K. Verma

R. K. Singh
Department of Physics, Patna Women’s College, Patna 800 001, India
A. Narayan
P.G. Department of Physics, Patna University, Patna 800 005, India
K. Prasad
Department of Physics, Central University of Jharkhand, Ranchi 835205, India
R. S. Yadav • A. C. Pandey
Nanotechnology Application Centre, University of Allahabad, Allahabad 211002, India
A. K. Singh • L. Verma • R. K. Verma (&)
Thermal Analysis Lab, University Department of Chemistry, Magadh University, Bodh-Gaya

Cited by (Detail)-

Cited No- 1: K.P. Tank et al. Crystal growth Laboratory, Dept. of Physics, Saurashtra University, Rajkot, Gujarat, India and Bioscience Dept. , Saurashtra University, Rajkot, Gujarat, India

Abstract: Hydroxyapatite (Ca 10 (PO 4) 6 (OH) 2; HAP) is a major mineral component of the calcified tissues, and it has various applications in medicine and dentistry.
Dependence of magnetic and structural properties of Ni$_{0.5}$M$_{0.5}$Fe$_2$O$_4$ (M=Co, Cu) nanoparticles synthesized by citrate precursor method on annealing temperature

Rakesh Kumar Singh1*, A. Yadav2, Kamal Prasad3, A. Narayan4*
1Department of Physics, Patna Women’s College, Patna University, Patna 800001, INDIA
2Vidya Vihar Institute of Technology, Purnea, INDIA
3University Department of Physics, T M Bhagalpur University, Bhagalpur, INDIA
4Department of Physics, Patna University, Patna 800005, INDIA
*Corresponding Author: e-mail:rakeshpu@yahoo.co.in,amarendra.nrn@gmail.com

INTERNATIONAL JOURNAL OF ENGINEERING, SCIENCE AND TECHNOLOGY
www.ijest-ng.com, © 2010 MultiCraft Limited. All rights reserved

Cited by:

Cited No. 1. Spectroscopic and magnetic investigation of NiCo nanoferrites

- Asghari Maqsooda, Kishwar Khana, M. Anis-ur-Rehmanb, M.A. Malikb

a Thermal Transport Laboratory, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan

b Applied Thermal Physics Laboratory, COMSATS, Institute of Information Technology, Islamabad, Pakistan
Study of the chelating/fuel agents influence on NiFe$_2$O$_4$ samples with potential catalytic properties

A.M. Dumitrescua, P.M. Samoilaa, V. Nicab, F. Dorofteic, A.R. Iordana, M.N. Palamarua

a Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11, Carol I Blvd., 700506, Iasi, Romania

b Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11, Carol I Blvd., 700506, Iasi, Romania

c P. Poni Institute of Macromolecular Chemistry, Romanian Academy, 41 A, Gr. Ghica Vodă Alley, Iasi, Romania

http://dx.doi.org/10.1016/j.powtec.2013.03.033, How to Cite or Link Using DOI

Synthesis, characterization and magnetic properties of carbon nanotubes decorated with magnetic MIIFe\textsubscript{2}O\textsubscript{4} nanoparticles

Syed Danish Alia, b, Syed Tajammul Hussaina, Syeda Rubina Gilanib

a National Centre for Physics, Quaid-e-Azam University Campus, Islamabad, Pakistan
b Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan

Corresponding author. Tel.: +92 51 2077308; fax: +92 51 2077395.

Highlights: Magnetic carbon nanotubes were prepared by decorating with MIIFe\textsubscript{2}O\textsubscript{4} nanoparticles. ► A simple microemulsion method was first time used for synthesis of MIIFe\textsubscript{2}O\textsubscript{4}/CNTs. ► Carbon nanotubes were uniformly coated with large number of magnetic nanoparticles. ► MIIFe\textsubscript{2}O\textsubscript{4}/CNTs nanocomposites show ferromagnetic behavior at room temperature.
Google Search: Thermal, XRD, and magnetization studies on ZnAl2O4 and NiAl2O4 spinels, synthesized by citrate precursor method and annealed at 450 and 650 C

R K Singh, A Yadav, A Narayan, M Chandra... - Journal of thermal ..., 2012 - Springer

... Rakesh K. Singh • A. Yadav • A. Narayan • Mukesh Chandra • RK Verma ... Authors RK Singh and A. Yadav also thank Nalanda Open University, Patna for a partial financial support

Cited by 7 Related articles All 5 versions

Cited by (Detail)

Cited No-1- Paper title- Nanocrystalline Ni-Zn ferrite nanoparticles, DOI-10.1007/s1097-011-2027-2, JTAC-Springer

a. K.Zhon et al. School of material Science & engineering, Gaangxi university, nanning, China, Pin-53004
b. W.Wu et al. School of Chemistry, Chemical engineering, , Gaangxi university, nanning, China, Pin-53004

Cited No- 2- Preparation of nanocrystalline BiFeO3 and Kinetics of thermal process of precursor, DOI-10.1007/s10973-012-2524-y

a. J.Hung et al. School of Chemistry, Chemical engineering, , Gaangxi university, nanning, China, Pin-53004
b. J.Huang et al., Guangxi Institute of metallurgy, People’s Republic of China

Cited No- 3- The thermal behaviour of some polymeric precursors used in CaAL12 O19 synthesis, DOI-10.1007/s10973-012-2414-3

a. L.Lazau et al.Politechnica university of Victoriei, Romania

Cited No- 4- Thermal studies of some biologically active complexes containing 8-hydroxyquinolinate, DOI-10 1007/s10973-012-2511-3

a. Reena Sharma and neeraj Sharma, Dept. of Chemistry, Himachal University Shila, India
Citation of research publications of Dr. Rakesh Kr Singh et. al

Paper: Thermal, structural and magnetic studies on chromite spinel synthesized using citrate precursor method and annealed at 450 and 650°C

Google search: RK Singh, A Yadav, A Narayan, AK Singh... - Journal of thermal ... 2012 - Springer

Unlike ferrites, the chromite spinels have no B... Annealing has also been done at 650 °C in an attempt to obtain nano- metric particles of chromites (MCr2O4) (M = Cu, Ni... RK Singh, Patna women's College et al. ...

Cited by 6 Related articles All 5 versions

Cited No-1. Particle size effects on the magnetic and phonon properties of multiferroic CoCr2O4

Maciej Ptak, Miroslaw Mączka, Krzysztof Hermanowicz, Adam Pikul, Jerzy Hanuza

a Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wroclaw 2, Poland

b Department of Bioorganic Chemistry, University of Economics, 53-345 Wroclaw, Poland

http://dx.doi.org/10.1016/j.jssc.2013.01.001, How to Cite or Link Using DOI

Cited No. 2

Synthesis, phonon and optical properties of nanosized CoCr2O4

M. Mączka, M. Ptak, M. Kurnatowska, J. Hanuza

a Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wroclaw 2, Poland

b Department of Bioorganic Chemistry, University of Economics, 53-345 Wroclaw, Poland

http://dx.doi.org/10.1016/j.matchemphys.2012.12.039, How to Cite or Link Using DOI

Many more------------------- 6
Nanocrystalline Zn$_{0.5}$Ni$_{0.5}$Fe$_2$O$_4$
Preparation and kinetics of thermal process of precursor

Wenwei Wu · Yongqi Li · Kaiwen Zhou · Xuexiang Wu · Sen Liao · Qing Wang

Received: 17 September 2011 / Accepted: 21 October 2011
© Akadémiai Kiadó, Budapest, Hungary 2011

Abstract Zn$_{0.5}$Ni$_{0.5}$Fe$_2$(C$_2$O$_4$)$_2$·6H$_2$O was synthesized by solid-state reaction at low heat using ZnSO$_4$·7H$_2$O, NiSO$_4$·6H$_2$O, FeSO$_4$·7H$_2$O, and Na$_2$C$_2$O$_4$ as raw materials. The spinel Zn$_{0.5}$Ni$_{0.5}$Fe$_2$O$_4$ was obtained via calcining Zn$_{0.5}$Ni$_{0.5}$Fe$_2$(C$_2$O$_4$)$_2$·6H$_2$O above 773 K in air. The Zn$_{0.5}$Ni$_{0.5}$Fe$_2$(C$_2$O$_4$)$_2$·6H$_2$O and its calcined products were characterized by thermogravimetry and differential scanning calorimetry (TG/DSC), Fourier transform IR, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), and vibratory sample magnetometer (VSM). The result showed that Zn$_{0.5}$Ni$_{0.5}$Fe$_2$O$_4$ obtained at 1073 K had a saturation magnetization of 86.7 emu g$^{-1}$. The thermal process of Zn$_{0.5}$Ni$_{0.5}$Fe$_2$(C$_2$O$_4$)$_2$·6H$_2$O experienced three steps, which involved the dehydration of the six crystal water molecules at first, and then decomposition of Zn$_{0.5}$Ni$_{0.5}$Fe$_2$(C$_2$O$_4$)$_2$ into Zn$_{0.5}$Ni$_{0.5}$Fe$_2$O$_4$ in air, and at last crystallization of Zn$_{0.5}$Ni$_{0.5}$Fe$_2$O$_4$. Based on KAS equation, and OFW equation, the values of the activation energies associated with the thermal process of Zn$_{0.5}$Ni$_{0.5}$Fe$_2$(C$_2$O$_4$)$_2$·6H$_2$O were determined to be 120.02 ± 23.93, and 259.76 ± 18.67 kJ mol$^{-1}$ for the first, and second thermal process steps, respectively. Dehydration of the six waters of Zn$_{0.5}$Ni$_{0.5}$Fe$_2$(C$_2$O$_4$)$_2$·6H$_2$O is multi-step reaction mechanisms. Decomposition of Zn$_{0.5}$Ni$_{0.5}$Fe$_2$(C$_2$O$_4$)$_2$ into Zn$_{0.5}$Ni$_{0.5}$Fe$_2$O$_4$ could be simple reaction mechanism, probable mechanism function integral form of thermal decomposition of Zn$_{0.5}$Ni$_{0.5}$Fe$_2$(C$_2$O$_4$)$_2$ is determined to be $g(x) = [-\ln(1 - x)]^2$.

Keywords Nanoparticles · Ferrites · Chemical synthesis · Non-isothermal kinetics · Thermal process

Introduction
Polycrystalline spinel ferrites have many unique properties, such as high electrical resistivity, high Curie temperature, large magnetocrystalline anisotropy, high coercivity, mechanical hardness, chemical stability, and temperature specific saturation magnetization, which make ferrites suitable for many applications in the field of high-density information storage, ferrofluids, catalysts, drug targeting, magnetic separation, magnetic resonance imaging, and gas sensor [1-6], etc. Within this group, Ni-Zn ferrites are very important soft magnetic materials. Its properties were highly dependent on the molar ratio of Ni to Zn, and crystallite diameter. Compared with other composition Ni$_x$Zn$_{1-x}$Fe$_2$O$_4$, Zn$_{0.5}$Ni$_{0.5}$Fe$_2$O$_4$ has higher specific saturation magnetizations [7].

To date, various methods have been developed to synthesize Ni$_x$Zn$_{1-x}$Fe$_2$O$_4$ with spinel structure, including co-precipitation [8, 9], citrate precursor method [10, 11], solid-state reaction at low heat [12], solid-state reaction at high temperature [13], sol-gel synthesis [13], glass-ceramic route [14], mechanical-chemical synthesis [15], molten salt method [16], refluxing method [17], reverse micelle method [18, 19], hydrothermal treatment [20], and combustion reaction [21], etc. In the synthesis of Zn$_{0.5}$Ni$_{0.5}$Fe$_2$O$_4$, it was found that crystallite diameter, morphology, and crystalline phases of Zn$_{0.5}$Ni$_{0.5}$Fe$_2$O$_4$ associated with its properties were highly dependent on the synthesis method and temperature. Such as Moualem-Bahout et al. [11] obtained globule-like...
The thermal behavior of some polymeric precursors used in CaAl\textsubscript{12}O\textsubscript{19} synthesis

I. Lazău · C. Păcurariu · R. Băbuţă

Abstract CaAl\textsubscript{12}O\textsubscript{19} was synthesised using three different precursors: (a) a polymeric type precursor resulted from the traditional Pechini method; (b) a polymeric type precursor resulted from the reaction between citric acid and calcium and aluminum nitrates; and (c) a polymeric type precursor resulted from the reaction between acryl acid and calcium an aluminum nitrates. The thermal behavior of the three precursors used in the CaAl\textsubscript{12}O\textsubscript{19} synthesis was monitored to underline the thermal effects associated to the CaAl\textsubscript{12}O\textsubscript{19} formation. Thermal analyses performed on precursors do not reveal clear differences regarding the thermal effects assigned to calcium aluminates formation, at temperatures over 800 °C. In contrast, thermal analysis of samples pre-fired at 200 °C, and especially at 600 °C, show clear differences between samples obtained in different ways. It is noted that in samples obtained from acrylic acid and nitrates, citric acid and nitrates, CA\textsubscript{16} is practically single phase after calcination at 1,200 °C. However, in the sample obtained from citric acid, ethylene glycol, and nitrates, calcined at 1,200 °C, CA\textsubscript{16} is present along with CA\textsubscript{2} and α-Al\textsubscript{2}O\textsubscript{3}.

Keywords Calcium aluminates · Polymeric precursor method · Thermal analysis

Introduction

Over time, the binary compounds of the CaO–Al\textsubscript{2}O\textsubscript{3} system were studied with interest for the valuable features owned by them. These compounds have been extensively analyzed due to their refractory and hydraulic properties and are also candidate materials for a wide range of technological applications because of their optical, electrical, thermal, and mechanical properties.

Calcium hexaaluminate CaAl\textsubscript{12}O\textsubscript{19} or CaO6Al\textsubscript{2}O\textsubscript{3} (CA\textsubscript{6}), known as bionite, has high refractory and a series of interesting electrical and optical properties. As a result, CA\textsubscript{6} synthesis is the subject of a large number of papers [1–5]. Since the formation of CA\textsubscript{6} through ceramic method runs difficult and requires very high temperatures (1,650 °C), the attention of researchers turned to various unconventional methods of synthesis, aiming the temperature decrease for the CA\textsubscript{6} synthesis.

Ianoş and his team [1] prepared single-phase CA\textsubscript{6} by low-temperature combustion synthesis, using a mixture of urea and β-alanine as fuel, no further ignition being necessary. Altay et al. [2] obtained CA\textsubscript{6} at 1,175 °C starting from a mixture of stoichiometric proportions of calcium and aluminum nitrates into 5 wt% aqueous solution of poly(vinyl alcohol). A new eco-friendly fabrication process for porous ceramics using hydraulic alumina and water was developed by Nagaoka et al. [3]; in this way they obtained CA\textsubscript{6} as single crystalline phase at 1,600 °C for 2 h. Using aluminum sulfate solutions and calcium nitrate as starting reagents, Singh and Sharma [4] obtained calcium hexaaluminate in the temperature range of 1,000–1,400 °C. Hexagonal CaAl\textsubscript{12}O\textsubscript{19} powders have been obtained at 1,200 °C for 2 h by a reverse micelle process [5].

Some calcium aluminates compounds were formed using as a raw material a hazardous waste from tertiary aluminum industry. The first aluminates formed was C\textsubscript{12}A\textsubscript{7} which at 838–848 °C had a transition to CA\textsubscript{2}, and then it was transformed to CA at 1,000–1,034 °C [6].
Thermal studies of some biologically active oxovanadium(IV) complexes containing 8-hydroxyquinolinate and hydroxamate ligands

Reena Sharma · Neeraj Sharma

SATAC-ACCT2011 Conference Special Chapter
© Akadémiai Kiadó, Budapest, Hungary 2012

Abstract The thermal decomposition behaviours of oxovanadium(IV)hydroxamate complexes of composition [VO₂Q₂(OH)₂(HL)₂]⁻ [VO₂(polly)[Q]₂(OH)₂(HL)₂]⁻ [VO₂(polly)[Q]₂(OH)[5-Cl](CO)[CONH]O]⁻ (II), [VO₂(C₆H₅ON)[Q]₂(OH)[5-Cl](CO)[CONH]O]⁻ (III), and [VO₂(C₆H₅ON)[Q]₂(OH)[5-Cl](CO)[CONH]O]⁻ (IV) (where Q = C₆H₅NO⁻ 8-hydroxyquinolinate ion; HL₁⁻ = [C₆H₅NO(OH)H][CONH]O⁻ salicylhydroxamate ion; HL₂⁻ = [C₆H₅NO(OH)[5-Cl](CO)[CONH]O⁻ 5-chlorosalicylhydroxamate ion; n = 1 and 2), which are synthesised by the reactions of [VO₂(Q)₂]⁻ with predetermined molar ratios of potassium salicylhydroxamate and potassium 5-chlorosalicylhydroxamate in THF + MeOH solvent medium, have been studied by TG and DTA techniques. Thermograms indicate that complexes (I) and (III) undergo single-step decomposition, while complexes (II) and (IV) decompose in two steps to yield VO₂HL₁⁻,VO₂HL₂⁻ as the likely intermediate and VO₂ as the ultimate product of decomposition. The formation of VO₂ has been authenticated by IR and XRD studies. From the initial decomposition temperatures, the order of thermal stabilities for the complexes has been inferred as III > I > II > IV.

Keywords Oxovanadium(IV) complexes · Potassium salicylhydroxamate · Potassium 5-chlorosalicylhydroxamate · Thermal studies

Introduction

Hydroxamic acids and their derivatives, the weak organic acids with low toxicity of general formula R-CO-NH(OH) and R-CO-NR'OH have extensively been studied as bioligands forming chelate complexes with numerous metals [1, 2]. The utility of hydroxamic acids as colorimetric reagents for the separation and determination of metal ions, antimalarial and tumour inhibitor drugs, enzyme inhibitors, cell division and growth factors [3–5] has also gained enormous importance. Likewise, 8-hydroxyquinolinate and its derivatives constitute another group of biologically important ligands exhibiting predominantly antimicrobial activities [6–9]. These two groups of ligands have been of an enormous research interest in the coordination chemistry of vanadium owing to the role of vanadium complexes in nitrogen fixation, catalysis, design of molecular magnets, material science, as insulin mimetic, antitumour and antiamoebic agents [10–13]. The chemistry of oxovanadium(IV) and (V) ions: VO²⁺, VO³⁺, VO₄²⁻ and VO₂(O₃)⁺, in particular, because of their affinity towards a variety of ligands exhibiting diverse geometries around vanadium has attained phenomenal growth over the years. In view of the biological importance of vanadium on one hand and those of hydroxamate and 8-hydroxyquinolinate ligands on the other hand and in continuation of our interest on the synthesis of new oxovanadium(IV) complexes [14, 15], we investigated the potential of unexplored [VO₂(Q)₂]⁻ as precursor towards the synthesis of mixed ligand and quinolinate-free oxovanadium(IV) complexes using biologically important hydroxamate ligands viz. salicylhydroxamate and 5-chlorosalicylhydroxamate [16]. Owing to the versatility and considerable prominence of thermal methods in virtually all the branches of science and technology [17–20], it was imperative to gain an insight into the thermal behaviours of the newly synthesised complexes derived from the ligands (Fig. 1) attracted by the scattered reports in the literature on the thermal behaviours of vanadium complexes yielding V₂O₅, V₂O₃, and VO₂ as residual
High Beam Research
(2002 establishments in the Chicago, United States)
Discover specific articles and research from thousands of credible, published sources.

Recently viewed items

Article: New Findings from R.K. Singh, Bihar, India and Co-Authors Describe Advances in Nanotechnology...
Dr. Rakesh Kr. Singh's work at the European Advanced Materials Congress 2016

To: "Rakesh Kr. Singh" <rakesh singhpu@gmail.com>

Subject: Re: "Sankh Bhasama physical Characteristics by Employing Modern Scientific tools and Applications"

I recently came across your work titled "Sankh Bhasama physical Characteristics by Employing Modern Scientific tools and Applications". As far as I understood, it has been written at the European Advanced Materials Congress 2016.

Following this, the editorial team of Omnicrptum Publishing Group reaches out to you with a free of charge publishing offer. Briefly speaking, we invite you to publish this work as an independent printed book which will be listed by major libraries and online bookstores.

Could you please let us know your thoughts regarding this opportunity? If you would like we can discuss the next steps.

I would be happy to answer any questions.

Sincere regards,

Ms. Parascovia Petrachi
Acquisition Editor

e: p.petrachi@lap-publishing.com
w: www.lap-publishing.com

LAP LAMBERT Academic Publishing
is managed by:
Omnicrptum AraPers GmbH
Bahnhofstraße 28, D-66111 Saarbrücken, Germany

Opening soon in:
One World Trade Center, Suite 8500, New York, USA

Get your books here:
www.morebooks.de

Management:
Toufic El Hajji
Dr. Wolfgang Philipp Muller
Benoit Novel

Dr. Rakesh Singh <rakesh singhpu@gmail.com>
To: "Manoranjan Kar" <mano@iiitp.ac.in>
Rakesh, your new stats are here. View

1 Read last week

1 read from China

Find out more

You've got more to discover on your stats page:

1 Profile views
See views by country / institution
Congratulations

Your publications reached **300 citations**

Achieved on Dec 13th

What project are you working on right now?
Add your current project and we'll find the right audience to follow your research.

<table>
<thead>
<tr>
<th>Reads</th>
<th>Citations</th>
<th>Profile views</th>
</tr>
</thead>
<tbody>
<tr>
<td>532</td>
<td>44</td>
<td>17</td>
</tr>
</tbody>
</table>

Reads

- Week ending Oct 09: 0
- Week ending Oct 16: 0
- Week ending Oct 23: 0
- Week ending Oct 30: 2
- Week ending Nov 06: 2
- Week ending Nov 13: 0
- Week ending Nov 20: 0
- Week ending Nov 27: 0

Citations

- Last week: 2
- Last month: 0

Profile views

- Last week: 0

Detailed stats for **week ending Nov 20 2016**
Rakesh, you have a new read

See your stats

Eugen Barbu
University of Portsmouth

Read

Article: Thermal, structural, magnetic and photoluminescence studies on cobalt ferrite nanoparticle...
R K Singh, bulb A Narayan, bullet K Prasad, ...

422 Reads 13 Citations

Do you have more full-texts you can add?
Add more full-texts to your publications to get more reads.

Add full-texts
Read:
Thermal, structural, magnetic and photoluminescence studies on coba...